您好,欢迎访问

商机详情 -

广西流畅目标跟踪

来源: 发布时间:2024年11月11日

YOLO算法具有以下几个明显的优势:快速高效:YOLO算法采用单次前向传播的方式进行目标检测和跟踪,相比传统方法的多次扫描图像,速度更快,适用于实时应用。准确性较高:通过引入先进的卷积神经网络和相关技术,YOLO算法在目标定位和类别预测方面具有较高的准确性。多尺度处理:YOLO算法通过特征金字塔网络和多尺度预测技术,可以处理不同大小的目标,并保持对小目标的有效检测。端到端训练:YOLO算法可以进行端到端的训练,避免了多阶段处理的复杂性,简化了算法的实现和使用。成都RV1126智能跟踪板提供商。广西流畅目标跟踪

目标跟踪

很多跟踪方法都是对通用目标的跟踪,没有目标的类别先验。在实际应用中,还有一个重要的跟踪是特定物体的跟踪,比如人脸跟踪、手势跟踪和人体跟踪等。特定物体的跟踪与前面介绍的方法不同,它更多地依赖对物体训练特定的检测器。人脸跟踪由于它的明显特征,它的跟踪就主要由检测来实现,比如早期的Viola-Jones检测框架和当前利用深度学习的人脸检测或人脸特征点检测模型。手势跟踪在应用主要集中在跟踪特定的手型,比如跟踪手掌或者拳头。设定特定的手型可以方便地训练手掌或拳头的检测器。广西流畅目标跟踪RV1126图像处理板的目标识别能力突出。

广西流畅目标跟踪,目标跟踪

云台的旋转将直接改变摄像机的视野,因此对于云台的控制必须谨慎且准确。错误的控制会使目标从视野中消失,导致跟踪的失败。此外,如果云台的控制幅度过小,可能会达不到目标回到视野中心的目的,目标也同样极易丢失。相反如果在对目标运动速度有可靠估计的前提下,提前将目标移到视野中目标运动方向的另一侧,将为此后跟踪目标赢得更多的时间,能够提高跟踪的成功率。所以为了使对于云台的控制更为合理,应该对于不同的情况采取不同的控制策略。对于情况的划分主要取决于目标的可靠性和速度的稳定性。

目标跟踪算法具有不同的分类标准,可根据检测图像序列的性质分为可见光图像跟踪和红外图像跟踪;又可根据运动场景对象分为静止背景目标跟踪和运动背景下的目标跟踪。由于基于区域的目标跟踪算法用的是目标的全局信息,比如灰度、色彩、纹理等。因此当目标未被遮挡时,跟踪精度非常高、跟踪非常稳定,对于跟踪小目标效果很好,可信度高。但是在灰度级的图像上进行匹配和全图搜索,计算量较大,非常费时间,所以在实际应用中实用性不强;其次,算法要求目标不能有太大的遮挡及其形变,否则会导致匹配精度下降,造成运动目标的丢失。Viztra-LE034图像跟踪板采用国内智能AI芯片。

广西流畅目标跟踪,目标跟踪

然后在下一帧采集的图像中对目标对象进行特征提取;特征匹配的过程既是将提取出来的目标对象的特征与我们事先已经建立的特征模板进行匹配,通过与特征模板的相似程度来确定被跟踪的目标对象,实现对目标的跟踪。基于特征的跟踪算法的优点在于速度快、对运动目标的尺度、形变和亮度等变化不敏感,能满足特定场合的处理要求。但由于特征具有稀疏性和不规则性,所以该算法对于噪声、遮挡、图像模糊等比较敏感,如果目标发生旋转,则部分特征点会消失,新的特征点会出现,因此需要对匹配模板进行更新。慧视微型双光吊舱能够实现昼夜成像。广西流畅目标跟踪

慧视光电开发的慧视AI图像处理板,采用了国产高性能CPU。广西流畅目标跟踪

近年来,我国多地智慧城市建设取得较好的成效,诸多创新技术和解决方案得到广泛应用。而在智慧停车方面,许多公共场所也开始逐步落地应用。一车一杆的系统,智能识别进出入车辆,控制车辆进出入,统计车位空缺数,在很大程度上能够优化公共停车场的交通拥堵等问题,能够提高安全和通行效率。智慧停车闸道装有车牌识别的机箱,该机箱集摄像头、图像处理板、显示屏、内存卡等设备于一体,其中图像处理板内置车牌识别算法,在摄像头获取车牌照片后,板卡算法就能进行快速又高精度的信息识别,并上传数据到后端控制中心,能够有效控制车辆的合理出入,方面管理者优化管理。广西流畅目标跟踪

标签: