人工智能起源于上个世纪五十年代,被誉为新时代工业发展的引擎。随着技术的发展,为了使得计算机可以拥有像人眼一样感知、分析、处理现实世界的能力,六十年代初,人工智能衍生出了一个重要的分支,计算机视觉。在计算机视觉的研究过程中,学者们为了阐述“根据目标在视频中的某一帧状态来估计其在后续帧中的状态”,一个新的学科——目标跟踪应运而生。目标跟踪是计算机视觉和机器人研发领域的重要分支,在人机交互、安全监控、自动驾驶、城市交通、军领域、医疗诊断等领域都发挥了重要的作用,其主要功能就是在视频图像中遍历感兴趣的区域,并在接下来的视频帧中对其进行跟踪有没有做全国产后跟踪版的公司?云南工业目标跟踪
在智慧农业领域可以分为人工干涉和无人值守2种。系统提供了良好的人机界面,用户可以通过系统的视频显示区观看摄像机摄制的现场视频,此时,用户可以人工通过系统提供的按钮以各种方式控制云台,即人工可以干涉监控的过程。系统在大部分情况下处于无人值守的工作状态,当监控中心的计算机系统收到外场设备的预警信号后,将自动向摄像机云台发出控制信号,控制摄像机将发生报警区域的图像锁定在监视器上,并同时按系统的设定调整好焦距,视野大小等。然后系统自动转入运动检测,检测当前区域是否有运动目标,如果有运动目标,则系统给出目标的一般性描述,提交给目标跟踪模块,对目标进行跟踪。在这过程中,系统将作日志,记录事故位置、时间等,同时对采集到的图像作硬盘录像。云南工业目标跟踪RK3588作为慧视光电开发的全国产化工业级板卡,具备高性能、高精度的优点。
云台的旋转将直接改变摄像机的视野,因此对于云台的控制必须谨慎且准确。错误的控制会使目标从视野中消失,导致跟踪的失败。此外,如果云台的控制幅度过小,可能会达不到目标回到视野中心的目的,目标也同样极易丢失。相反如果在对目标运动速度有可靠估计的前提下,提前将目标移到视野中目标运动方向的另一侧,将为此后跟踪目标赢得更多的时间,能够提高跟踪的成功率。所以为了使对于云台的控制更为合理,应该对于不同的情况采取不同的控制策略。对于情况的划分主要取决于目标的可靠性和速度的稳定性。
随着社区等安防向着智能化的进一步发展,越来越多的领域对传统意义上的视频监控提出了更加的严格要求,虽然传统监控系统已经可以满足人们“眼见为实”的要求,但同时这种监控系统要求监控人员不得不始终看着监视屏幕,获得视频信息,通过人为的理解和判断,才能得到相应的结论,做出相应的决策。因此,让监控人员长期盯着众多的电视监视器成了一项非常繁重的任务。特别在一些监控点较多的情况下,监控人员几乎无法做到完整的监控。振动测试是否通过正是确定板卡能否在这样的环境下正常完成工作的关键手段。
目标检测和跟踪在许多应用中都具有重要的意义,例如智能监控、自动驾驶和人机交互等。传统的目标检测算法需要多次扫描图像,并使用复杂的特征提取和分类器来识别目标。然而,这些方法在实时性和准确性上存在一定的限制。随着YOLO算法的出现,目标检测和跟踪领域取得了重大突破。YOLO算法概述YOLO算法是一种基于卷积神经网络的目标检测和跟踪算法。与传统方法相比,YOLO算法采用了全新的思路和架构。它将目标检测问题转化为一个回归问题,通过单次前向传播即可同时预测图像中多个目标的位置和类别。这使得YOLO算法在速度和准确性上具备了明显优势。无人机吊舱能够通过定制算法和精细定位技术实现农药精细喷洒、农作物精细抛粮等操作。云南工业目标跟踪
快速移动的汽车怎么锁定跟踪?云南工业目标跟踪
另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。云南工业目标跟踪