YOLO算法的关键技术在YOLO算法中,有几个关键技术对其性能起着重要作用。首先是使用卷积神经网络提取图像特征,其中引入了一些先进的网络结构,如Darknet。其次是使用AnchorBox来提高目标定位的精度。此外,YOLO算法还引入了特征金字塔网络和多尺度预测等技术,以处理不同大小的目标。YOLO算法在实时目标检测和跟踪中的应用YOLO算法在实时目标检测和跟踪领域取得了明显的成果。它不仅在检测速度上远超传统方法,而且在目标定位和类别预测准确性上也表现出色。因此,YOLO算法在许多应用中得到了广泛应用,如视频监控、自动驾驶和物体识别等。成都慧视的跟踪版是国产化的!四川智能化目标跟踪
YOLO算法具有以下几个明显的优势:快速高效:YOLO算法采用单次前向传播的方式进行目标检测和跟踪,相比传统方法的多次扫描图像,速度更快,适用于实时应用。准确性较高:通过引入先进的卷积神经网络和相关技术,YOLO算法在目标定位和类别预测方面具有较高的准确性。多尺度处理:YOLO算法通过特征金字塔网络和多尺度预测技术,可以处理不同大小的目标,并保持对小目标的有效检测。端到端训练:YOLO算法可以进行端到端的训练,避免了多阶段处理的复杂性,简化了算法的实现和使用。四川智能化目标跟踪慧视光电的RK3588跟踪板怎么样?
2010年以前,目标跟踪领域大部分采用一些经典的跟踪方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征点的光流算法等。Meanshift方法是一种基于概率密度分布的跟踪方法,使目标的搜索一直沿着概率梯度上升的方向,迭代收敛到概率密度分布的局部峰值上。首先Meanshift会对目标进行建模,比如利用目标的颜色分布来描述目标,然后计算目标在下一帧图像上的概率分布,从而迭代得到局部密集的区域。Meanshift适用于目标的色彩模型和背景差异比较大的情形,早期也用于人脸跟踪。由于Meanshift方法的快速计算,它的很多改进方法也一直适用至今。
随着社区等安防向着智能化的进一步发展,越来越多的领域对传统意义上的视频监控提出了更加的严格要求,虽然传统监控系统已经可以满足人们“眼见为实”的要求,但同时这种监控系统要求监控人员不得不始终看着监视屏幕,获得视频信息,通过人为的理解和判断,才能得到相应的结论,做出相应的决策。因此,让监控人员长期盯着众多的电视监视器成了一项非常繁重的任务。特别在一些监控点较多的情况下,监控人员几乎无法做到完整的监控。慧视RK3399图像处理板能实现24小时、无间隙信息化监控。
自动化的视频跟踪系统的工作流程一般是摄像机的模拟信号通过视频电缆传送至计算机,计算机通过视频采集卡将模拟视频信号转换为数字视频信号,该转换的输出的数字图像一方面在计算机CRT上显示,同时传送至内存进行目标检测或跟踪(根据需要可同时进行硬盘录像),计算机根据算法的运算结果来控制摄像机的云台,这个控制过程是通过通讯协议卡和双绞线电缆和摄像机的云台接口来完成的。监视和跟踪系统的启动可以是人工的,也可以由系统的报警输入设备启动。高性能的图像卡一般自带显卡,能够避免廉价的多媒体卡长时间地、连续地通过总线传送到计算机的显存而带来的死屏、CPU的占用及总线的占用等问题。国产化跟踪板卡生产厂家—慧视光电。四川智能化目标跟踪
慧视AI板卡可以用于大型公共停车场。四川智能化目标跟踪
由于侵入的目标的形状和颜色等特征是难以固定的,再加上监控的场景,即背景往往比较复杂,只利用一个单帧图像就找出移动的目标是非常困难的。然而,目标的运动导致了其运动时间内,监控场景图像的连续变化,所以,使用图像序列分析往往是比较有效的,而且适合于低信噪比的情况。由于监控系统通常监控的视野比较大,系统设置的环境较为恶劣,图像传输的距离较远,从而导致图像的信噪比不高,因此采用突出目标的方法,需要在配准的前提下进行多帧能量积累和噪声抑制。在该技术中,要研究的问题有,相邻的两幅或多幅图像之间的关系是什么关系,是简单的图像差的值,还是多幅之间差的最大值,还是其他的与图像减法之间的其他函数关系,是尤其需要研究的。在研究中,研究如何差,如何自动得到差图像的分割门限,如何减小背景和突出目标是研究的方向。四川智能化目标跟踪