针尖|压头|纳米力学测试|圆锥型针尖
纳米硬度计主要由移动线圈、加载单元、金刚石压头和控制单元4部分组成。压头及其所在轴的运动由移动线圈控制,改变线圈电流的大小即可实现压头的轴向位移,带动压头垂直压向试件表面,在试件表面产生压力。移动线圈设计的关键在于既要满足较大量程的需要,还必须有很高的分辨率,以实现纳米级的位移和精确测量。压头载荷的测量和控制是通过应变仪来实现的。应变仪发出的信号再反馈到移动线圈上.如此可进行闭环控制,以实现限定载荷和压深痕实验。整个压入过程完全由微机自动控制进行。可在线测量位移与相应的载荷,并建立两者之间的关系压头大多为金刚石压头,常用的压头有Berkovich压头、Cube Corner压头和Conical压头。原子力显微镜(AFM)在纳米力学测试中发挥着重要作用,可实现高分辨率成像。广西汽车纳米力学测试厂商
较大压痕深度1.5 μ m时的试验结果,其中纳米硬度平均值为0.46GPa,而用传统硬度计算方法得到的硬度平均值为0.580GPa,这说明传统硬度计算方法在微纳米硬度测量时误差较大,其原因就是在微纳米硬度测量时,材料变形的弹性恢复造成残余压痕面积较小,传统方法使得计算结果产生了偏差,不能正确反映材料的硬度值。图片通过对不同载荷下的纳米硬度测量值进行比较发现,单晶铝的纳米硬度值并不是恒定的, 而是在一定范围内随着载荷(压头位移)的降低而逐渐增大,也就是存在压痕尺寸效应现象。图3反映了纳米硬度随压痕深度的变化。较大压痕深度1μm时单晶铝弹性模量与压痕深度的关系。此外,纳米硬度仪还可以输出接触刚、实时载荷等随压头位移的变化曲线,试验者可以从中获得丰富的信息。广西汽车纳米力学测试厂商纳米机器人研发中,力学性能测试至关重要,以确保其在复杂环境中的稳定性。
纳米力学性能测试系统是一款可在SEM/FIB中对微纳米材料和结构的力学性能进行原位、直接而准确测量的纳米机器人系统。测试原理是通过微力传感探针对微纳结构施加可控的力,同时采用位移记录器来测量该结构的形变。从测得的力和形变(应力-应变)曲线可以定量地分析微纳米结构的力学性能。通过控制加载力的大小和方向,可实现拉伸、压缩、断裂、疲劳和蠕变等各种力学测试。同时,其配备的导电样品测试平台可以对微纳米结构的电学和力学性能进行同步测试。
模块化设计使系统适用于各种形貌样品的测试需求及各种SEM/FIB配置,紧凑的外形设计适用于各种全尺寸的SEM/FIB样品室。用户可设计自定义的测试程序和测试模式:①FT-SH传感器连接头,其配置的4个不同型号的连接头,可满足各种不同的测试条件(平面外或者平面内测试)和不同的测试距离。②FFT-SB样品基座适配头,其配置的4个不同型号的适配头用来调节样品台的高度和角度。③FT-ETB电学测试样品台,包含2个不同的电学测试样品台,实现样品和纳米力学测试平台的电导通。④FT-S微力传感探针和FT-G微镊子,实现微纳力学测试和微纳操作组装(按需额外购买)。纳米力学测试可以用于评估纳米材料的耐久性和寿命,为产品的设计和使用提供参考依据。
纳米压痕技术,纳米压痕技术是一种直接测量材料硬度和弹性模量的方法。该方法通过在纳米尺度下施加一个小的压痕负荷,通过测量压痕的深度和形状来推算材料的力学性质。纳米压痕技术一般使用压痕仪进行测试。在进行纳米压痕测试时,样品通常需要进行前处理,例如制备平整的表面或进行退火处理。测试过程中,将顶端负载在材料表面上,并控制负载的大小和施加时间。然后,通过测量压痕的深度和直径来计算材料的硬度和弹性模量。纳米压痕技术普遍应用于纳米硬度测试、薄膜力学性质研究等领域。纳米力学测试的发展促进了纳米材料及其应用领域的快速发展和创新。广西汽车纳米力学测试厂商
纳米力学测试还可以评估材料在高温、低温等极端环境下的性能表现。广西汽车纳米力学测试厂商
纳米力学测试仪,纳米力学测试仪是用于测量纳米尺度下材料力学性质的专属设备。纳米力学测试仪可以进行纳米级别的压痕测试、拉伸测试和扭曲测试等。它通常配备有纳米压痕仪、纳米拉曼光谱仪等附件,可以实现多种力学性质的测试。纳米力学测试仪的使用需要在纳米级别下进行精细调节,并确保测试精度和重复性。它普遍应用于纳米材料的强度研究、纳米薄膜的力学性质测试及纳米器件的力学性能等方面。综上所述,纳米尺度下材料力学性质的测试方法多种多样,每种方法都有其独特的优势和适用范围。广西汽车纳米力学测试厂商
广州致城科技有限公司
联系人:吴小姐
联系手机:17675683340
联系电话:176-756833-40
经营模式:生产型
所在地区:广东省-广州市-天河区
主营项目:针尖|压头|纳米力学测试|圆锥型针尖